The WANO Performance Indicator Programme supports the exchange of operating experience information by collecting, trending and disseminating nuclear plant performance data. WANO members across the globe submit data for a set of quantitative indicators of plant performance in the areas of nuclear plant safety, reliability and personnel safety. These indicators are intended principally for nuclear operating organisations to use as a management tool to monitor their performance and progress, and to set their own challenging goals for improvement, and to gain additional perspective on their performance relative to that of other stations.

WANO continues to work closely with the International Atomic Energy Agency (IAEA) in the area of performance indicators. Cross-checking the data between the two organisations improves data quality and provides a better understanding of data reporting issues.

Beyond the five key performance indicators that are discussed in this trifold, there are several more non-key indicators. Results can be found in the Quarterly reports and on the WANO website. For information, the definitions are as follows:

- **Unplanned Automatic (UA7) Scrams per 7,000 Hours Critical**: This indicator is defined as the number of unplanned automatic scrams (reactor protection system logic actuations) that occur per 7,000 hours of critical operation (which is approximately one year of operation). It provides an indication of success in improving plant safety by reducing the number of undesirable and unplanned thermal-hydraulic and reactivity transients.

- **Fuel Reliability (FRI)**: For this indicator, fuel reliability is inferred from fission product activities present in the reactor coolant. Due to design differences, this indicator is calculated differently for different reactor types. Overall, the purpose of this indicator is to monitor operational chemistry control effectiveness. It combines several key chemistry parameters into a single indicator that can be used as an overview of the relative effectiveness of plant operational chemistry control.

- **Grid-Related Loss Factor (GRLF)**: This is the percentage of maximum energy generation that a plant could not supply due to grid issues not under station management control.

- **Unplanned Capability Loss Factor (UCLF)**: This is the percentage of maximum energy generation that a plant is not capable of supplying to the electrical grid because of unplanned energy losses (such as unplanned shutdowns or outage extensions) which are not under management control. A low value indicates important unit equipment is well maintained and reliably operated and there are few outage extensions.

- **Chemistry Performance (CPI)**: The purpose of this indicator is to monitor operational chemistry control effectiveness. It combines several key chemistry parameters into a single indicator that can be used as an overview of the relative effectiveness of plant operational chemistry control.

- **Industrial Safety Accident Rate (ISA)**: This indicator measures the number of accidents among employees that result in lost work time, restricted work, or fatalities per 200,000 (or 1,000,000) hours worked.

- **Unit Capability Factor (UCF)**: This is the percentage of maximum energy generation that a unit is capable of supplying to the electrical grid, limited only by factors within the control of station management. A high unit capability factor indicates effective station programmes and practices to minimise unplanned energy losses and to optimise planned outages.

- **Contractor Industrial Safety Accident Rate (CISA)**: This indicator measures the number of accidents among contractors that result in lost work time, restricted work, or fatalities per 200,000 (or 1,000,000) hours worked.
The WANO Performance Indicator Programme supports the exchange of operating experience information by collecting, viewing and disseminating nuclear plant performance data. WANO members across the globe submit data for a set of quantitative indicators of plant performance in the areas of nuclear plant safety and reliability and personnel safety. These indicators are intended principally for nuclear operating organisations to use as a management tool to monitor their performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on their performance relative to that of other stations.

WANO continues to work closely with the International Atomic Energy Agency (IAEA) in the area of performance indicators. Crosschecking the data between the two organisations improves data quality and provides a better understanding of data reporting issues.

Besides the five key performance indicators that are discussed in this trifold, there are several more non-key indicators. Results can be found in the Quarterly reports and on the WANO website. For information, the definitions are as follows:

Unplanned Automatic (UA7) Scrams per 7,000 Hours Critical
This indicator is defined as the number of unplanned automatic scrams (reactor protection system logic actuations) that occur per 7,000 hours of critical operation (which is approximately one year of operation). It provides an indication of success in improving plant safety by reducing the number of undesirable and unplanned thermal-hydraulic and reactivity transients.

Fuel Reliability (FRI)
For this indicator, fuel reliability is inferred from fission product activities present in the reactor coolant. Due to design differences, this indicator is calculated differently for different reactor types. Overall, the purpose of this indicator is to monitor industry progress in achieving and maintaining high fuel integrity, and to foster a healthy respect for preservation of fuel integrity. Failed fuel represents a breach in the initial barrier preventing offsite release of fission products, has a detrimental effect on operating cost and performance, and increases the radiological hazard to plant workers.

<table>
<thead>
<tr>
<th>Performance Indicator</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid-Related Loss Factor (GRLF)</td>
<td>This is the percentage of maximum energy generation that a unit is incapable of supplying to the electrical grid because of unplanned energy losses (such as unplanned shutdowns or outage extensions) which are not under management control. A low value indicates important unit equipment is well maintained and reliably operated.</td>
</tr>
<tr>
<td>Unplanned Capability Loss Factor (UCLF)</td>
<td>This is the percentage of maximum energy generation that a unit is incapable of supplying to the electrical grid because of unplanned energy losses (such as unplanned shutdowns or outage extensions) which are not under management control. A low value indicates important unit equipment is well maintained and reliably operated.</td>
</tr>
<tr>
<td>Chemistry Performance (CPI)</td>
<td>The purpose of this indicator is to monitor operational chemistry control effectiveness. It combines several key chemistry parameters into a single indicator that can be used as an overview of the relative effectiveness of plant operational chemistry control.</td>
</tr>
<tr>
<td>Industrial Safety Accident Rate (ISA)</td>
<td>This indicator measures the number of accidents among employees that result in lost work time, restricted work, or fatalities per 200,000 (or 1,000,000) hours worked.</td>
</tr>
<tr>
<td>Unit Capability Factor (UCF)</td>
<td>This is the percentage of maximum energy generation that a unit is capable of supplying to the electrical grid, limited only by factors within the control of station management. A high unit capability factor indicates effective station programmes and practices to minimise unplanned energy losses and to optimise planned outages.</td>
</tr>
<tr>
<td>Contractor Industrial Safety Accident Rate (CISA)</td>
<td>This indicator measures the number of accidents among contractors that result in lost work time, restricted work, or fatalities per 200,000 (or 1,000,000) hours worked.</td>
</tr>
</tbody>
</table>
New Long-Term Objectives for 2020

In 2007, the WANO Governing Board approved the establishment of worldwide targets for key performance indicators that were to be achieved by 2015. In developing the targets, the WANO regional directors selected four performance indicators to monitor for each reactor type (FLR), collective radiation exposure (CRE), industrial safety accident rate (ISAR), and system safety performance indicator (SSPI). For each performance indicator, two targets were established – industry-level targets and individual unit or station targets. As can be seen below, the industry targets are aimed at improving overall industry performance, and are based on 75% of the industry achieving the median values from the previous target period. Individual performance targets, on the other hand, are based on all units (100%) achieving results that are better than the lowest quartile values from the previous target period.

Based on a review of progress to date, new long-term targets for 2020 were proposed by the Performance Indicator programme and approved by the WANO Executive Leadership Team. In addition, a fifth key performance indicator was added – unplanned total scrams per 7,000 hours critical (US7) indicator – and individual and industry targets for 2020 were established based on historical performance by reactor type. Tracking the long-term targets for 2020 began in the first quarter of 2019.

Forced Loss Rate (FLR)

This indicator is the area under the curve of all unplanned forced energy losses to the reference energy generation minus energy generation losses corresponding to planned outages and any unplanned outage extensions during a given period of time, expressed as a percentage. Unplanned energy losses are either unplanned forced energy losses or unplanned outage extensions of planned outage energy losses. Planned energy losses are those corresponding to outages or power reductions which were planned and scheduled at least four weeks in advance.

Collective Radiation Exposure (CRE)

This indicator is the total external and internal whole body exposure determined by primary dosimeter, and internal exposure calculations. It includes all measured exposure reported for personnel working onsite that result in one supplemental personnel, and all other non-utility plant personnel, including all staff, contractors, and personnel visiting the site or station on official utility business.

Industrial Safety Accident Rate (ISAR)

This indicator is the number of accidents for all plant personnel, including all staff, contractors, supplemental personnel, and all non-utility personnel working onsite that result in one or more days away from work (excluding the day of the accident) or fatalities per 200,000 (TISA2) or per 1,000,000 (TISA1) hours worked.

Safety System Performance Indicator (SSPI)

This indicator is the ratio of all unplanned forced scrams to the reference energy generation. Units that have met all the individual targets for SSPI, the lower graph shows the percentage of units that have met all the individual targets for the different safety systems (SP1, SP2, and SP5). For this percentage, the industry objective is 100%.

Unplanned Total Scrams per 7,000 hours critical (US7)

This indicator is the sum of the number of unplanned automatic scrams (reactor protection system logic actuating) and unplanned manual scrams for approximately one year (7,000 hours) of operation. Full worldwide data collection for the US7 indicator did not begin until 2015.

INDICATOR	**UNIT**	**INDIVIDUAL TARGET**	**INDUSTRY TARGET**
Operating Period Forced Loss Rate (FLR)	Percent (%)	5.0	2.0
Collective Radiation Exposure (CRE)	Man·Sv/yr	1.0	0.5
Man-Sv/yr	0.5	0.2	
Total Industry Safety Accident Rate (TISA)	Number per 200,000 hours worked	0.50	0.20
Safety System Performance Indicator (SSPI)	Unavailability	SPI1 and SPI2 (0.02) (SPI3) 0.005	100% of worldwide units achieve the individual targets
SPI5	0.005		
Unplanned Total Scrams per 7,000 hours critical (US7) | Rate | WWER: PWR: AGR: 1.0 | WWER: PWR: AGR: 1.0

Most of the long-term targets for 2020 are the same as those for 2015, with the following exceptions:
- Collective radiation exposure targets for advanced gas-cooled reactors (AGR) have been updated due to changes in operational plant conditions.
- Personnel safety performance will be compared to targets for the new total industry safety accident (TISA) rate indicator, which replaces the ISAR indicator used for the 2015 targets.
- The SSPI industry target is now based on the percentage of units achieving all the individual SSPI targets.

The 2020 long-term objective for FLR, CRE and TISA indicators are continued from 2015:
- As an industry: 75% of units shall have an indicator value better than achieved by 50% of units in 2007.
- Individually: 100% of units shall have an indicator value better than achieved by 75% of units in 2007.

The numerical targets corresponding to these objectives are summarised in the table above.
New Long-Term Objectives for 2020
In 2007, the WANO Governing Board approved the establishment of worldwide targets for key performance indicators that were to be achieved by 2015. In developing the targets, the WANO regional directors selected four performance indicators to monitor for the 2015 target, collective radiation exposure (CRD), industrial safety accident rate (ISAR), and system performance indicator (SPI).

The numerical target values corresponding to these objectives are summarised in the table above.

<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>UNIT</th>
<th>INDIVIDUAL TARGET</th>
<th>INDUSTRY TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Period Forced Loss Rate (FLR)</td>
<td>Percent (%)</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>Collective Radiation Exposure (CRD)</td>
<td>Man-rem/yr</td>
<td>200,000</td>
<td>5.0</td>
</tr>
<tr>
<td>Total Industry Safety Accident Rate (TISA)</td>
<td>Rate</td>
<td>200,000</td>
<td>2.0</td>
</tr>
<tr>
<td>Safety System Performance Indicator (SPI)</td>
<td>Unavailability</td>
<td>200,000</td>
<td>1.0</td>
</tr>
<tr>
<td>Unplanned Total Scrams per 7,000 hours critical (US7)</td>
<td>Rate</td>
<td>200,000</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Most of the long-term targets for 2020 are the same as those for 2015, with the following exceptions:

- Collective radiation exposure targets for advanced gas-cooled reactors (AGRs) have been updated due to changes in operational plant conditions.
- Personnel safety performance will be compared to targets for the new total industry safety accident rate indicator, which replaces the ISA indicator used for the 2015 targets.
- The SPI industry objective is now based on 100% of units achieving the different safety systems (SP1, SP2 and SP5).

For this percentage, the industry objective is 100%.

Collective Radiation Exposure (CRD)
This indicator is the sum of the number of unplanned forced energy losses (to the reference energy generation minus energy generation losses corresponding to planned outages or any unplanned outage exclusions during a given period of time, expressed as a percentage.

Unplanned energy losses are either unplanned forced energy losses or unplanned outage extensions of planned outage energy losses. Planned energy losses are those corresponding to outages or power reductions which were planned and scheduled at least a few weeks in advance.

Total Industrial Safety Accident (TISA)
This indicator is the number of accidents for all plant personnel, including all staff, contractors, supplemental personnel, and all non-utility personnel working onsite that result in one or more days away from work (excluding the day of the accident) or fatalities per 200,000 (TISA1) or per 1,000,000 (TISA2) hours worked.

Unplanned Total Scrams per 7,000 hours critical (US7)
This indicator is the sum of the number of unplanned automatic scrams (reactor protection system logic actuations) and unplanned manual scrams for approximately one year (7,000 hours) of operation.

Safety System Performance Indicator (SPI)
In 2007, the WANO Governing Board approved the establishment of worldwide targets for key performance indicators that were to be achieved by 2015. In developing the targets, the WANO regional directors selected four performance indicators to monitor for the 2015 target, collective radiation exposure (CRD), industrial safety accident rate (ISAR), and system performance indicator (SPI), and collective radiation exposure (CRD).
In 2007, the WANO Governing Board approved the establishment of worldwide targets for key performance indicators that were to be achieved by 2015. In developing the targets, the WANO regional directors selected four performance indicators to monitor: forced loss rate (FLR), collective radiation exposure (CRE), industrial safety accident rate (ISA), and safety system performance indicator (SSPI).

Collective Radiation Exposure (CRE)

This indicator is the total external and internal whole body exposure determined by primary dosimeter, and internal exposure calculations. It includes all measured exposure reported for plant personnel, including all staff, contractors, visiting the site or station on official utility business.

Total Industrial Safety Accident Rate (TISA)

This indicator is the number of accidents for all plant personnel, including all staff, contractors, supplemental personnel, and all non utility personnel working onsite that result in one or more days away from work (excluding the day of the accident) or fatalities per 200,000 (TISA2) or per 1,000,000 (TISA1) hours worked.

Safety System Performance Indicator (SSPI)

This indicator is the ratio of all unplanned forced energy losses to the reference energy generation minus energy generation losses corresponding to off-normal events or accidents. It also indirectly monitors the effectiveness of operations and maintenance practices in managing the unavailability of safety system components. A lower value for this system performance indicator indicates a greater margin of safety for preventing reactor core damage. The SSPI, SP1 and SP5 headings identify the specific safety systems monitored by the indicator. SFI usually refers to the high pressure safety injection system and SSPI is usually the auxiliary feedwater system or similar system. SP1 refers to the emergency power system. Other systems monitored vary according to reactor type.

Most of the long-term targets for 2015 are the same as those for 2010, with the following exceptions:

- Collective radiation exposure targets for advanced gas-cooled reactors (AGR) have been updated due to changes in operational plant conditions.
- The SPI industry objective is now based on the percentage of units achieving all the individual SPI targets.
- The SSPI industry objective is based on the percentage of units achieving all the individual SPI targets.

The 2020 long-term objective for FLR, CRE and TISA indicators are continued from 2015:

- As an industry: 75% of units shall have an indicator value better than achieved by 75% of units in 2015.
- Individually: 100% of units shall have an indicator value better than achieved by 75% of units in 2015.

The numerical targets corresponding to these objectives are summarised in the table above.

<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>UNIT</th>
<th>INDIVIDUAL TARGET</th>
<th>INDUSTRY TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Period Forced Loss Rate (FLR)</td>
<td>Percent (%)</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Collective Radiation Exposure (CRE)</td>
<td>Man-Sv/yr</td>
<td>200,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Total Industry Safety Accident Rate (TISA)</td>
<td>Number per 200,000 hours worked</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>Safety System Performance Indicator (SPI)</td>
<td>Unavailability</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Unplanned Total Scrams per 7,000 hours critical (US7)</td>
<td>Rate</td>
<td>100% of worldwide units achieve the individual targets</td>
<td></td>
</tr>
</tbody>
</table>

The SP1, SP2 and SP5 headings identify the specific safety systems monitored by the indicator. SP1 usually refers to the high pressure safety injection system and SSPI is usually the auxiliary feedwater system or similar system. SP1 refers to the emergency power system. Other systems monitored vary according to reactor type.

NOTE: Given the SSPI industry target definition for SFI, the lower graph shows the percentage of units that have met all the individual targets for the different safety systems (SFI, SP2 and SSPI). For this percentage, the industry objective is 100%.

Unplanned Total Scrams per 7,000 hours critical (US7)

This indicator is the sum of the number of unplanned automatic scrams (reactor protection system log: spc. actuation) and unplanned manual scrams for approximately one year (7,000 hours) of operation.

Full worldwide data collection for the US7 indicator did not begin until 2013.

Reactor Types

<table>
<thead>
<tr>
<th>REACTOR TYPE</th>
<th>ACCIDENT SEVERITY SCALE</th>
<th>NOTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR: Pressurised water reactor</td>
<td>BWR: Boiling water reactor</td>
<td>Light water cooled graphite-moderated reactor</td>
</tr>
<tr>
<td>LWCGR: Light water cooled graphite reactor</td>
<td>LWCGR: Light water cooled graphite reactor</td>
<td>Heavy water reactor</td>
</tr>
<tr>
<td>PHWR: Pressurised heavy water reactor</td>
<td>PHWR: Pressurised heavy water reactor</td>
<td>Prepressurised water reactor</td>
</tr>
</tbody>
</table>

WANO and its members will be worldwide leaders in pursuing excellence in operational nuclear safety for commercial nuclear power.
The WANO Performance Indicator Programme supports the exchange of operating experience by collecting, trending and disseminating nuclear plant performance data. WANO members across the globe submit data for a set of quantitative indicators of plant performance in the areas of nuclear plant safety and reliability and personnel safety. These indicators are intended principally for nuclear operating organisations to use as a management tool to monitor their performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on their performance relative to that of other stations.

WANO continues to work closely with the International Atomic Energy Agency (IAEA) in the area of performance indicators. Crosschecking the data between the two organisations improves data quality and provides a better understanding of data reporting issues.

Besides the five key performance indicators that are discussed in this trifold, there are several more non-key indicators. Results can be found in the Quarterly reports and on the WANO website. For information, the definitions are as follows:

Unplanned Automatic (UA7) Scrams per 7,000 Hours Critical
This indicator is defined as the number of unplanned automatic scrams (reactor protection system logic actuations) that occur per 7,000 hours of critical operation (which is approximately one year of operation). It provides an indication of success in improving plant safety by reducing the number of undesirable and unplanned thermal-hydraulic and reactivity transients.

Fuel Reliability (FRI)
For this indicator, fuel reliability is inferred from fission product activities present in the reactor coolant. Due to design differences, this indicator is calculated differently for different reactor types. Overall, the purpose of this indicator is to monitor operational chemistry control effectiveness. It combines several key chemistry parameters into a single indicator that can be used as an overview of the relative effectiveness of plant operational chemistry control.

Grid-Related Loss Factor (GRLF)
This is the percentage of maximum energy generation that a plant is not capable of supplying to the electrical grid because of grid-related issues beyond the control of station management.

Unplanned Capability Loss Factor (UCLF)
This is the percentage of maximum energy generation that a unit is not capable of supplying to the electrical grid because of unplanned energy losses (such as unplanned shutdowns or outage extensions) which are not under management control. A low value indicates important unit equipment is well maintained and reliably operated and there are few outage extensions.

Chemistry Performance (CPI)
The purpose of this indicator is to monitor operational chemistry control effectiveness. It combines several key chemistry parameters into a single indicator that can be used as an overview of the relative effectiveness of plant operational chemistry control.

Industrial Safety Accident Rate (ISA)
This indicator measures the number of accidents among employees that result in lost work time, restricted work, or fatalities per 200,000 (or 1,000,000) hours worked.

Unit Capability Factor (UCF)
This is the percentage of maximum energy generation that a unit is capable of supplying to the electrical grid, limited only by factors within the control of station management. A high unit capability factor indicates effective station programmes and practices to minimize unplanned energy losses and to optimize planned outages.

Contractor Industrial Safety Accident Rate (CISA)
This indicator measures the number of accidents among contractors that result in lost work time, restricted work, or fatalities per 200,000 (or 1,000,000) hours worked.